药效组分中药"黄金菊" 对甲型流感病毒的抑制作用*

□张春晖 张贵君** 王晶娟 杨晶凡 郑璐璐 (北京中医药大学中药学院 北京 100102)

摘 要:目的:研究"黄金菊"抗甲型流感病毒 PR8(A/PR8/34/H1N1)的活性,为药效组分中药的 发现提供科学依据。方法:采用 MTT 掺入比色法测定药效组分中药"黄金菊"对狗肾传代细胞(MD-CK)的毒性及对 PR8 的有效性,同时设定阳性药物对照组及空白对照组;采用生物效价二剂量法对 该药物与阳性药物的等效剂量进行比较。结果:该药物对 MDCK 细胞的 TD50 为 1.9061mg·mL-1; TD0 为 0.625mq·mL-1; 对流感病毒 PR8 的 MIC 为 312.5μq·mL-1, IC₅₀ 为 112.8694μq·mL-1。双黄连粉针与 "黄金菊"等反应剂量比为 184.91%;病毒唑与"黄金菊"等反应剂量比为 46.17%。结论:"黄金菊"具有 对甲型流感病毒的直接抑制作用,且存在明显的量效反应关系,作用优于市场应用较广泛的双黄连 粉针,开发前景广阔。

关键词:药效组分中药"黄金菊" 甲型(H1N1)流感病毒 直接抑制作用

中药黄金菊来源于临床经方,是由金莲花、黄 芩、野菊花三味药组成的现代中药复方制剂,具有 清热解毒的功效,临床上治疗上呼吸道感染、咽炎、 扁桃体炎等疗效确切。在药效组分理论指导下,药 效组分中药经药理学辅助验证,具有与原方等效或 优于原方的新制剂,具备中药疗效及本质特征,具 有高度的均匀性、量值的准确性及良好的稳定性[1], 各药效组分之间具有明确的比例关系。药效组分中 药"黄金菊"是在黄金菊原方基础上,由本实验室研 制的药效组分新药。

许多上呼吸道感染疾病是由病毒所引起的。医 用外源性干扰素、白细胞介素-2等能抑制病毒复 制,提高机体细胞免疫功能,治疗前景良好,但费用昂 贵,且大量使用尚有一定不良反应[2]。在病毒感染的 治疗方面,中药品种往往具有一定的优势。目前,市 场上针对呼吸道病毒开发较成熟的品种双黄连注 射剂具有良好的抗病毒作用,然而由于许多化学成 分不明确,质量控制不科学等因素,导致其不良反 应时有发生[3],因此,开发新型疗效确切、化学成分明 确的抗病毒制剂显得尤为迫切。本文就组分中药"黄 金菊"对呼吸道甲型流感病毒(PR8株)的作用进行 了研究,现报道如下。

收稿日期: 2009-07-14

[World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica] 856

科技部科技基础性工作专项重点项目(2007KYI130100):道地中药材及标准物质研制与分析方法研究,负责人:张贵君。

^{**} 联系人: 张贵君, 教授, 博士研究生导师, 主要研究方向: 中药鉴定方法学; 组分中药及中药药效组分质量标准体系研究, Tel:010-84738624 , E - mail : guijunzhang@163.com $_{\circ}$

一、实验材料

1. 主要仪器

DY-2 型全自动酶标测定仪(瑞士 Fluostar Optima 公司); C320 型二氧化碳培养箱(美国 Thermo Forma 公司)。

2. 主要试剂

RPMI1640 细胞培养基液干粉(批号: 20071020RP, Gibco公司);无支原体新生牛血清(批号 071115, 杭州四季青生物工程材料有限公司); MTT(噻唑蓝)(美国 Sigma); Hank's 平衡盐干粉(批号: 20080520HA, 美国 Sigma); pH7.0 PBS 干粉(批号: 20070810, 华美生物科技有限公司); DMSO(二甲基亚砜)(Amresco公司)。

3. 试验药物

黄金菊(冻干粉,150mg/瓶,由本课题组研制)。

对照药:双黄连粉针剂(600mg/瓶,哈药集团中药二厂,批号0801251);注射用利巴韦林(又名病毒唑,浙江康裕制药有限公司,批号0804151)。

4. 病毒株及细胞

甲型流感病毒(A/PR8/34/H1N1,以下简称 PR8,购自中国预防科学院北京病毒研究所);MDCK(购自中国预防科学院北京病毒研究所)。该病毒在 MDCK中的 TICD₅₀ 为 10^{-5.323}/0.1mL。

二、实验方法

1. 药物对 MDCK 细胞毒性测定

以上试验药物用无菌水及细胞维持液配分别配制成 20mg·mL⁻¹,40mg·mL⁻¹,20mg·mL⁻¹作为测定 TD₅ 最大浓度样本液(配制后 2h 内使用)。分别进行 2 倍连续梯度稀释,将各浓度样本液加到已长成单层的 96 孔细胞培养板,每个浓度平行加 4 孔,0.1mL/孔,同时设置空白对照和细胞对照。5%CO₂、37℃培养,倒置显微镜逐日观察细胞病变(CPE)情况。当大浓度样本培养孔中细胞出现 CPE,每孔加入 5mg·mL⁻¹ MTT 50μL,5%CO₂、37℃继续培养 2h。1500rpm 离心10min,弃去液体。用 PBS 洗 3 次,每次加入 PBS 0.2mL/孔,浸泡 1min,1500rpm 离心 10min,弃去液体。每孔加溶解液 0.1mL,振荡 5~10min,待结晶完全溶解,酶标仪 570nm 处,用空白对照孔调零,读取各孔 OD 值。

确定各样本对 MDCK 细胞的 TD₀(细胞存活率大

于 90%的最大样本浓度)。细胞存活率(%)=(实验孔 OD 值 / 细胞对照孔 OD 值)×100%

按 Reed Muench 法[4]计算 TD50:

 TD_{50} = anti-lg(低于 50%细胞存活率的样本浓度的对数+距离比值×稀释倍数的对数)

距离比例值=(50%-低于50%的存活率)/(高于50%存活率-低于50%的存活率)

2. 不同浓度供试药物病毒抑制率测定

将各样本用 Hank's 液分别配制成对 MDCK 的 最大无毒浓度。用细胞维持液将各样本液从最大无 毒浓度开始做二倍连续梯度稀释共9个梯度(原液、 1:2、1:4、1:8、……1:256),每个浓度梯度样本液 2mL。 分别取各稀释度样本液 0.5mL 于无菌离心管。于每 管样本液中加入 50μL 1000TICD50 病毒液,使病毒的 终浓度为 100TICD₅₀。4℃冰箱作用 2h。将作用液分别 加到已经长成单层的 96 孔细胞培养板。每个梯度浓 度样本与病毒作用液平行加 4 孔,每孔 0.1mL。置 5% CO₂、37℃吸附 1h。吸去孔中液体,用无菌 Hank's 液 洗板 2 次,每次加液 0.1mL/孔,浸泡 1min 后吸去孔 中液体。加入不含样本的细胞维持液 0.1mL/孔,置 5%CO₂、37℃培养,逐日倒置显微镜下观察 CPE 出现 情况,尤其是病毒对照孔 CPE 情况。毒对照 CPE 达 80%以上时,每孔加入 5mg·mL-1 MTT 50μL,5%CO₂、 37℃继续培养 2h,1500rpm 离心 10min,弃去上清。用 PBS 洗 3 次,每次加入 PBS 0.2mL/孔,浸泡 1min, 1500rpm 离心 10min, 弃去液体。每孔加溶解液 0.1mL,振荡 5~10min,待结晶完全溶解,酶标仪 570nm 处,用空白对照孔调零,读取各孔 OD 值。计算 病毒抑制率。

3. 药物对 PR8 抗病毒活性 MIC 及 IC50 的测定

依据不同浓度供试药物对病毒抑制率确定样本对病毒的 MIC,按 Reed Muench 法计算 IC50,计算公式为:IC50=(样本 OD-病毒 OD)/(细胞对照 OD-病毒对照 OD)×100%。

4. 药物对数浓度-病毒抑制率关系曲线绘制

以不同浓度供试药物对病毒抑制率为纵坐标, 以药物对数浓度为横坐标,绘制标准曲线。计算线性 回归方程及 r 值。

5. "黄金菊"抗病毒药效评价

根据绘制的剂量反应曲线,以对照药、待测药物 在线性范围内高、低浓度抑制病毒率为观察指标(每 一浓度平行测定 4 次),采用生物效价二剂量法^[5],

857 (World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica)

高、低浓度剂距比为 2:1,照生物检定法中的 2:2 法进 行可靠性检测及黄金菊与双黄连、黄金菊与病毒唑 的等反应剂量比计算,从而评价黄金菊的抗甲型流 感病毒的药效作用。

三、实验结果

- 1. 药物对 MDCK 细胞毒性作用 测定结果(见表1)
- 2. 不同浓度供试药物病毒抑制 率测定(见表2)
- 3. 药物对 PR8 的 MIC 和 IC50 测 定结果(见表 3)
- 4. 药物对数浓度-病毒抑制率关 系曲线

直线方程及计算值见表 4, 量效 关系标准曲线见图 1。

由图 1 及表 4 可见,在 3 个供 试药物的对数浓度与病毒抑制率存 在线性关系,并且存在共有线性范 围 (39.0625~156.25μg·mL⁻¹),故可 以在此范围内进一步进行等效剂量 比计算。

5. "黄金菊"抗病毒药效评价

在线性范围内,选取高浓度 156.25μg·mL-1,低浓 度 78.125μg·mL⁻¹,每浓度平行测定 4次,病毒抑制率 结果,见表5。

黄连粉针与黄金菊等反应剂量比值 R= 184.91%, 可靠性检测结果, 见表 6。

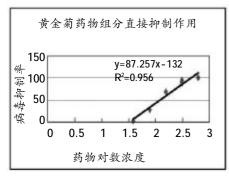
病毒唑与黄金菊等反应剂量比值 R=46.17%,可 靠性检测结果,见表7。

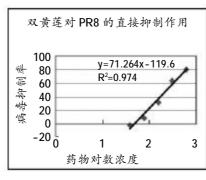
表 1 药物对 MDCK 细胞的 TD₀ 和 TD₅₀

样本名称	TD ₅₀ (mg·mL ⁻¹)	TD ₀ (mg·mL ⁻¹)
"黄金菊"冻干粉	1.9061	0.625
双黄连粉针剂	2.5862	0.625
病毒唑	6.5224	1.250

表 2 不同浓度样本对 PR8 病毒抑制率

样本及	浓度	对数	对数 病毒抑制率(%)		
稀释度	$(\mu g\!\cdot\! mL^{\text{-}1})$	浓度	"黄金菊"冻干粉	双黄连粉针	病毒唑
空白对照	-		_	-	-
病毒对照	100TICD ₅₀		0	0	0
细胞对照			100	100	100
样本原液	625	2.79588	101.504	79.4783	97.3435
1:02	312.5	2.49485	94.8665	63.5054	99.0909
1:04	156.25	2.19382	68.7359	32.3715	91.9185
1:08	78.125	1.89279	28.8	8.7792	71.9851
1:16	39.0625	1.59176	3.2028	-0.4218	45.7535
1:32	19.53125	1.29073	-0.3353	-0.0266	28.4224
1:64	9.765625	0.98970	-1.6165	-0.2267	7.5155
1:128	4.8828	0.68867	-0.6255	0.0404	-0.5371
1:256	2.4414	0.38763	-0.9629	0.6248	-


表 3.样本对 PR8 的 MIC 和 IC50


样品名称	IC ₅₀ (μg·mL ⁻¹)	$MIC(\mu g\boldsymbol{\cdot} mL^{\text{-}1})$	
"黄金菊"冻干粉	112.8694	312.5	
双黄连	231.3401	>625	
病毒唑	43.7006	156.25	

注:">"表示大于本样本最大无毒浓度。

表 4 各药物抗 PR8 病毒量-效关系的直线方程及计算值

样品名称	方程	r	n
"黄金菊"冻干粉	y=87.257x-132.00	0.9566	5
双黄连粉针	y=71.264x-119.61	0.974	5
病毒唑	y=64.027x-54.106	0.9841	6

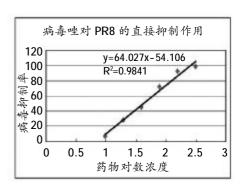


图 1 各药物抗 PR8 病毒量-效关系标准曲线 A:"黄金菊"冻干粉;B:双黄连粉针剂;C:病毒唑

[World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica] 858

表 5 选取高、低浓度对 PR8 抑制百分率

	"黄金菊"冻干粉		双黄连粉针		病毒唑	
	78.125 μg⋅mL⁻¹	156.25 μg·mL ⁻¹	156.25 μg·mL ⁻¹	312.5 μg·mL ⁻¹	78.125 μg·mL ⁻¹	156.25 μg∙mL⁻¹
1	29.20	69.19	10.17	31.56	74.60	106.88
2	25.57	91.76	6.87	31.64	77.75	82.41
3	34.94	61.58	3.93	33.00	58.59	82.82
4	25.42	53.26	13.87	33.38	78.87	96.92

表 6 "黄金菊"冻干粉与双黄连粉针等效剂量比计算可靠性检验结果

变异来源	自由度	差方和	方差	F值	Р
回归	1	4077.09	4077.09	44.93	<0.01
偏离平行	1	271.56	271.56	2.99	>0.05
剂间	3	755.05	2518.35	27.75	< 0.01
孔间	3	121.69	40.56	0.45	>0.05
误差	9	816.69	90.74		
总变异	15				

表 7 "黄金菊" 冻干粉与病毒唑等效剂量比计算可靠性检验结果

变异来源	自由度	差方和	方差	F值	Р
回归	1	3602.70	3602.70	25.38	<0.01
偏离平行	1	416.67	416.67	2.94	>0.05
剂间	3	8498.66	2832.89	19.96	< 0.01
孔间	3	300.23	100.08	0.71	>0.05
误差	9	1277.57	141.95		
总变异	15				

四、讨论

根据以上试验结果,可以认为黄金 菊药效组分在 MDCK 细胞中对甲型流 感病毒具有直接抑制作用,且该药物最 小抑制浓度均明显低于最大中毒剂量, 优于目前市场上销售的双黄连针粉剂, 且组分明确,质量可控性强,具有良好 的开发利用价值。

参考文献

- 1 张贵君,罗容,王亦杰.中药药效组分理论与中药组分学.中药材,2007,39(2):1~2.
- 冯本华,马萍,徐燕.中药抗病毒感染的研究近况. 现代中西医结合杂志,2005,14(15):2073~2075.
- 3 胡斌,李燕.双黄连粉针剂的不良反应.药品评价,2005,2(5):395~396.
- 4 黄祯祥. 医学病毒学基础及实验技术.北京科学出版社,1990:661~693.
- 5 杨汝德.生物药物分析与检验.南华理工大学出版社.2002:125~128.

Anti - influenza Effect of Huangjinju, A Chinese Medicine with Active Components Alignment Zhang Chunhui, Zhang Guijun, Wang Jingjuan, Yang Jingfan, Zheng Lulu (School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China)

Abstract: The anti-influenza effect of Huangjinju, a Chinese medicine with active components alignment, was studied to provide scientific evidence for the discovery of new Chinese medicines. The anti-influenza effect of Huangjinju and its toxicity to MDCK were determined by the MTT assay. Meanwhile, the blank control and positive control were established. The equivalent-dose ratio of Huangjinju to positive drugs was estimated by the two-dose method. In MDCK, Huangjinju was found to inhibit influenza H1N1 virus in a concentration-dependent manner, with TD₅₀ being $1.9061 \text{mg} \cdot \text{mL}^{-1}$, TD₀ $0.625 \text{mg} \cdot \text{mL}^{-1}$, MIC $312.5 \mu \text{g} \cdot \text{mL}^{-1}$ and IC₅₀ $112.8694 \mu \text{g} \cdot \text{mL}^{-1}$. The equivalent-dose ratio of Shuanghuanglian to Huangjinju was 184.91%, and that of Virazole to Huangjinju was 46.17%. The results showed that, compared with Shuanghuanglian, Huangjinju has direct inhibitory effect on H1N1 influenza virus. With an obvious dose-effect relationship, Huangjinju will have a bright prospect.

Keywords: Active aligment Chinese drug-Huang Jinju; H1N1 of influenza virus; Direct inhibitory effect

(责任编辑:崔建华 李沙沙,责任译审:张立崴)

859 (World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica)